ГІ́ЛЬБЕРТАВА ПРАСТО́РА,

абагульненне эўклідавай прасторы на бясконцамерны выпадак. Уведзена ў канцы 19 — пач. 20 ст. ў працах Д.Гільберта як вынік абагульнення фактаў і метадаў раскладання функцый у артаганальныя шэрагі, а таксама даследаванняў інтэгральных ураўненняў. Выкарыстоўваецца ў розных раздзелах матэматыкі, тэорыі імавернасцей, тэарэт. фізікі.

Першасна гільбертава прастора — прастора бясконцых паслядоўнасцей, напр., x = (x1, x2,..., xn, ...) са збежным шэрагам квадратаў x12 + x22 + ... + xn2 + ... . Суму двух элементаў (вектараў) паслядоўнасцей, іх скалярны здабытак і інш. вылічваюць пакаардынатна па звычайных правілах (гл. Вектарная прастора, Вектарнае злічэнне). У больш шырокім сэнсе гільбертава прастора — лінейная прастора, для якой вызначаны скалярны здабытак. У залежнасці ад вызначэння множання элементаў на сапраўдны ці камплексны лік адрозніваюць сапраўдныя і камплексныя гільбертавы прасторы.

т. 5, с. 244

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)